Gokul Murali

Project description

Shape-memory structures have a wide scope of potential application ranging from deployment of satellites to drag reduction in aircraft. There are several studies taking place worldwide that are investigating the capability of shape memory composites for such applications. Traditionally, shape memory composites are made of at least one specialised shape memory material thus increasing their complexity and decreasing their feasibility. This project will focus on the development of shape memory composites without any shape memory constituents in an attempt to make a commercially viable product.

The aim of this project is to develop and optimise ‘intrinsically heated’ shape memory composites for satellite applications. This project will build upon the earlier works of Prof Paul Robinson (Imperial College London), who will be supervising it. The scope of this project includes the development of the composite, optimisation of structure, and modelling of this phenomenon.

Education

PhD Researcher at Imperial College London (2019-Present)

M.Sc., Aerospace Engineering, Delft University of Technology, (2016-2018)

Research interests

High-performance composites, materials characterization techniques, NDT, functional materials, and adhesives technology.

Personal note

Outside of my academic life, I love travelling, personal fitness, watching movies, and reading fantasy fiction books. I also love cooking, and would always be up for a coffee and meeting new people.

Latest publications by this author

Towards separator-free structural composite supercapacitors

Olivier Hubert, Nikola Todorovic, Alexander Bismarck

Structural supercapacitors can both carry load and store electrical energy. An approach to build such devices is to modify carbon fibre surfaces to increase their specific surface area and to embed them into a structural electrolyte. We present a way to coat carbon fibres with graphene nanoplatelets by electrophoretic deposition in water. The effect of time and voltage on the mechanical properties of the carbon fibres, the structure of the coating and the specific surface area of the coated carbon fibres are discussed. A specific capacity of 1.44 F/g was reached, which is 130% higher than state-of-the-art structural electrodes. We demonstrate the scalability of the deposition process to continuous production of coated carbon fibres. These carbon fibre electrodes were used to realise large (21 cm long) structural supercapacitor demonstrators without the need for a separator, having a specific capacity of 623 mF/g.

Improving flexural modulus of interleaved composites using reinforced thermoplastic interleaves

Gokul Ganesh Murali, Paul Robinson, Alexander Bismarck, Christoph Burgstaller

Interleaving the plies of carbon fibre reinforced epoxy composites with thermoplastic interleaves have previously been shown to enable these composites to display controllable stiffness and shape memory properties. However, the incorporation of unreinforced thermoplastic interleaves leads to a decrease in flexural modulus of the interleaved composites. In this study, the flexural modulus of composites with reinforced polystyrene interleaves was investigated. The reinforcements used in this study were: (1) stainless steel mesh (SS), (2) unidirectional carbon fabric (UD), (3) woven carbon fabric, (4) woven carbon fabric with epoxy coating and (5) non-woven short carbon fibre mesh. The flexural moduli of the interleaved composites with reinforced interleaves were predicted theoretically and determined experimentally. Among these composites, significant increases in the flexural modulus were achieved in the interleaves with UD, woven and woven+epoxy reinforcements. Additionally, these interleaved composites were shown to retain their controllable stiffness and shape memory properties.

Design of a deployable composite mesh to form a segment of a circular cylindrical surface

Gokul Ganesh Murali, Paul Robinson, Alexander Bismarck, Christoph Burgstaller

In this work, we have used finite element (FE) modelling to develop an interleaved composite mesh structure capable of deploying along a curved path to form a segment of a circular cylindrical surface. Such mesh structures could allow the creation of semi-permanent deployable shelters for people and vehicles, especially during disaster relief and humanitarian assistance. Abstract can be found in the link below.